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1. Introduction. The paper deals with the mathematical
foundations of a probability theory not hitherto considered in
the literature. It follows the axiomatic approach proposed by
A. N. Kolmogorov [2] in (real-valued) ordinary probability
theory. While this point of view may not be as intuitively
sound and logically satisfactory as those proposed later by
Jerzy Los [3] and Yukiyosi Kawada ]1[, it nevertheless is the
most well-known if not the most elementary and easily dev
eloped.

Like all mathematical theories, probability theory may be
founded on the theory of sets, which will consequently be
assumed here. Kolmogorov's approach starts with a set V

. (called the population or sample space). Intuitively, the ele
ments of V consist of all the possible outcomes of a random
experiment under consideration. A (random) event is a subset
of V, but, for reasons of both a practical and theoretical nature,
not every subset of U is, in general, an event. The fundamental
requirement, in any case, for any family of subsets of U to be

:an admissible family of events over U is that it forms a Boo
lean algebra under the set-theoretical operations of union U,
inter-section n, and complementation'. For our purposes, the
following is a sufficient requirement.

DEFINITION 1. A family F of subsets of U is a Boolean
algebra (that is, a field of events over U) if and only if

(a) f/J, U e F,

o
1 This communication is an excerpt from a body of results obtained

by author while working as a consultant to the Bureau of the Census
and Statistics, Manila. The author is a Professor and Chairman of the

. Mathematics Department at the Ateneo.



The same family F is called a <T - algebra (or a (J - field ot
events over U) if and only if in addition
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(b) if X, Y e F, then X - Y € F and X n Y e F.

oc
(c) X € F (i = 1, 2, ... , n, ... ) implies n Xi e F.

i )=1 i

Clearly, if F is a field of events «(J - field of events) over
U, then

(b'.) X,Y€FimpliesXUY=U-[(U-X) n(U-Y)]

00

e F, (c') X, e F for i = 1, 2, ... , n, ... implies U Xi =
;=1

00

U-[r! (U-Xi)]€F).
;=1

From matrix theory, recall that an n by n real symmetric
matrix A is said to be positive semi-definite if and only of for
every real row vector x w.-e have xAx' > O. Let us denote
A > 0 when A is positive semi-definite and A > B if and only
A - B > O. Denote by [0, I] the set of all positive semi-definite
n by n matrices A such that O. < A < I, where I is the n by n
identity matrix.

DEFINITION 2. A matrix-valud probability space is a
triple (U, F, P) consisting of a sample space U, a IT - field F
of events over U, and a set function P: F ~ [0, I] such that

(a) P (U) = I,

(b) P is countably additive, i.e. for any family of pairwise

disjoint subsets X € F (i
00

1, 2, ... , n, ... ), P ( U Xi)
i=1

00
::-E P (X).

i=l i

2. The Fundamental Theorem. We will need a couple of
Lemmata to prove the fundamental theorem.

LEMMA A. If F is a <T - field of events over U and P 1j :

F ~ R is a real-valued bounded countably additive set func-



tion, then there exists an element M e F such that P ij (M) is
maximum (similarly for minimum).

Proof. We shall only prove the former result. The proof
of the parenthetical remark follows in a similar manner. Let
m = sup [Plj (X): X { F].

First note that P ij (cp) = P ij ( cp U cp·u ... u cp u ... )
P ij (cp) + Pu (q., U ... u cp u ... ) = P ij (cp) + P ij (cp)
2Pij (cp) and hence P ij (cp) = O.

Thus, clearly the number m is non-negative. Let Xl>
X~, ... , X n , ••• be elements belonging to F such that lim

n-+co

P ij (XII) = m. Since Pi j is bounded, then all PI j (Xn ) are
finite. Also observe that
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~
1Ili.i. 'ro'

co co
XII = U (XI' - X k +1 ) U n x,

k=1I k=1

where the sets occurring on the rightare also pairwise disjoint.

Tn,us

co
Therefore, m = lim P ij (XII) = P ( n Xl')

"-+co k=1

co+ lim ~ P i j

"-+co k="

co co
(XI' - X k +1 ) = P ij ( n XI' ) + O. Observe that M = n

k=1 k=1

'. X, e F is the required set.

LEMMA B. If F is a a - field of events over U and P ij:
F --+ R is a real-valued bounded countably additive set func
tion, then

••

•

P,, (X) = P+ij (X) - P-Ij (X)

for each X c F, where
P+ij (X) = sup [Pi; (Y): X:;; Y e F] and

P-i; (X) = -inf [Pj, (Y): X =2. Y e F] are both non

'decreasing and countably additive set functions.

Proof. As in the proof of the previous Lemma, let XI, X 2,

... , XII' ... be a sequence 'of subsets of X belonging to ,F such
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•

that lim P ij (X, ) = P+ij (X). Then for each n,
n~ 00

XII U (X - Xn) = X

and hence P ij (Xn) + P ij (X - Xn) = P jj (X). Thus, lim
n~ 00

P ij (X - XII) = Pi] (X) - lim Pij (Xn) = P ij (X)_
n~ 00

sup [P ij (Y): X 2 Y e F] = inf [P ij (X) -Pij (Y): X

:::> Y f F] = inf [P ij (X-Y): X ) X - Y e F] = inf [PI j- . -
(Z): X..? Z e F] = r-, (X).

Therefore P ij (X) = lim PI; (X) + lim Pi; (X - Xn) =
~oo ~oo •

P+;; (X) - p-i! (X) for all X f F.
If X, Y f F such that X ~ Y, then clearly P+" (X)

< P+;] (Y) and p-i! (X) < P-i1 (Y) from the definition.
These mean that P+;i and P-\i are non-decreasing set functions.

To show that P+jj is countably additive, we first show
. finite additivity. Let X, Y e F such that X n Y = cp. Then

for each X U Y 2 Z e F, we have Z = (X n Z) U (Y n Z)

so that Pii(Z) = Pij(X n Z) + Pij(Y (I Z) < P+ij(X) +
P+ij(Y). Whence P+ij(X U Y) < P+ij(X) + P+ij(Y). By de

finition of P+ jj there exist sets Z 2 x, f F and Y ~ v, e F such

that lim Pij(Xn ) = P+ij(X) and lim Pij(Y,.) = P+1j(Y).
Thus for n big enough XII n Y, = cp and P ij (XII U YIl) =
Pjj(XIl). + Pij(YIl). Hence lim Pij(XIl U YIl) = lim Pij(X

1
.)

+ lim Pij(YII) = P+jj(X) + P+ij(Y). Inasmuch as XII U

YII ~ X U Y, then P+ij(X) + P+ij(Y) < P+ij(X U Y).

00

Now, let S = U S, f F where 8;, S~, ... , SIl, ... are pair-
i=1

wise disjoint sets also belonging to F. Then for S ~ Z f F,
00 -

Z = U (Si nZ) and S\ n Z C Si for all i. Hence Pii(Z) _
\=1 -

00 00 00

~ Pij(Si n Z) < :SP+ij(S;).ThisimpliesP+ij(S) <~P+ij"
i=1 i=1 i=1

(S;). On the other hand 8, U S~ U .. U SII ~ S and since P+ ij

~ is finitely additive and non-decreasing we have

•

,.
~I
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..

00

Whence s P+ij (8d < P+ij (8). The final result follows
i=1

THEOREM. If (U, F, P) is a matrix-valued probability
space and X e F such that

l
Pl1(X) P I2(X) ... PIli (X)]
P I2(X) P 22(X) . . . P 211 (X)

P(X) -
PIli (X)-_····_·P~:I-(j{)··········:·:-:-·······P~I::( X)

then

(i ) (U, F, Pid for each i = 1,2, ... , n are ordinary real- .-.
valued probability spaces;

(ii) F ij (i =1= j) for all i, j =1,2, ... , n are finite countably .
additive set functions on F to [0,1] such that

.• F ij = P+ij - P-1 j , where (U, F, P+ij) and (U, F, P-ij) are or- 
dinary real-valued probalility spaces.

Proof. Consider an arbitrary family Xj, X 2, ... , Xu,
of pairwise dispoint sets in F. Then

•
00 00 00 00

<PI j ( U X k ) ) = P ( U x.: = ~ P (Xd = ~ (PI j ( 8 k ) )
k=1 k=1 k=l k=1

Hence for all choices of i and j,

'.

•

( i) This means that for each X e F, 0 < P (X) =
(P jj (X) ) < 1= (d i j ) where d., = 0 for i =1= j and d., = 1.
Thus, 0 < PII (X) and (d., - P ij (X) ) > 0 so that 1 - Pit
(X) < 0 or Pi i (X) < 1. Whence (U, F, Pi;) is an ordinary
probability space for all i = 1, 2, ... , n.

(ii) For all i =1= j, note that since (P 1 j (X) ) is positive
semi-definite, all its principal minors must be non-negative,
that is to say,
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I
P (X) r., (X) I
P;; (X) P

j j
(X) = P i i (X) P j j (~) - p2 j j (X) >0.

This implies that P::: j j (X) < Pi! (X) P jj (X) < 1.1 = 1 or
- 1 < P l j (X) < + 1.

By Lemma A, there exists a set M e F such that P l j (M)
(which is less than or equal to 1) is maximum. For each
X € F, set X, = X n M and X::: = X - X, = X - M.

Then P+i j (X:::) = O. For, suppose not, that is P+IJ (X:!)
> O. Then by the definition of the sup there exists a set
Y <;,. S::: with Y € F such that P i j (Y) > O. Since Y n M £:
S2 n M = cf>, then Y U M e F and r., (Y U M) = P l j (Y)
+ P l j (M) > P i j (M), contrary to the maximality of
P j j (M).

Similarly, P- i j (Xl) = 0, for, if not P- i j (XI) > 0,
then by definition of the inf there exists a set Z ~ X, with.

Z e F such that - P i j (Z) > 0 or P l j (Z) < O. Since
Z C x, C M, then (M - Z) U Z = M and

= =

•

•

-,

P i j (M - Z) + P i j (Z) = P i j (M) or
P i j (M - Z) = r., (M) -Pl j (Z) > r., (M),.

again contrary to the maximality of P,, (M).

From the conclusions P- i j (Xj ) = 0 and P+i j (X:::) = 0-
of the two previous paragraphs, it follows then that

P+l j (X) = P+i j ex, U X 2 ) = P+i j (Xl) + P+i j (X2 )

P+i j (Xd and P- i j (X) = P-i j ex, U X:!) = P- I j (Xd +
P-i j (X:::) = P-Ij (X:::).

From these it follows that

P i j (Xl) = P+i j (Xd - P- i j (XI) = P+i j (Xl) =
P+l j (X) and P i j (X:::) = P+l j (X:::) - P- j j (X2 )

P-i j (X).

Therefore, for an arbitrary X e F, we have

o < P+i j (X) = P i j (Xd = I P i j cx.: I < 1
and

•

•



•
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These relations complete the proof that P+j j and P' j j for all
i -:/= j are probability functions and P j j = P+ 1j - P-1 j •

To a mathematically trained reader, it is now almost
obvious that numerous standard results in ordinary real-valued
probability do extend to the case of matrix-valued probability.
For a complete exposition of these results please refer to the
monograph of the author which will be published by the
Bureau of the Census and Statistics[4].

• 3. Conditional Probability and Independence. For pur-
poses of illustration we shall here develop the notion of con
ditional probability and prove the Bayes Theorem in matrix
valued probability spaces.

DEFINITION 3. Events Xl> X:!, ... , XII e F in a matrix
valued probability space (U, F, P) are said to be independent
if and only if for any subset [Y}, ... , YuJ of [X, , ... , X,J,
P (Yj n ... n Ym ) = P (Y1 ) •.• P (Ym ) .

• Observe that this definition implies that the product
appearing on the right side of the above equality is not only
defined but is also positive semi-definite and hence their factors
commute with one another. (Recall that two positive semi
definite matrices have a positive semi-definite product if and
only if they commute.)

.. DEFINITION 4. If X, Y €F of a matrix-valued probability
space (U, F, P) and P (X) is non-singular (i. e. positive defi
nite) and commutes with P (X n Y), then the conditional
probability of Y given X is defined by

P (Y I X) = P (Y n X) P (X) .1.

\ .

•

From Definition 4, note that if P (X) commutes with
P (Y n X), then P (X)·l also commutes with P (Y n X)
and P (Y I X) is well-defined.

PROPOSITION. Let (U, F, P) be a matrix-valued pro
bability space. Then

(1) forallY,X€FsuchthatX~YwehaveP(Y IX)

1. In particular, P (X I X) = I;
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•
(2) if for all X € F and every family YJ, Y~, ... , Y Il ,

of pairwise disjoint subsets in F the probabilities P (Y; I X)
are defined for each i = 1, 2, .. 0' n, 00 0' then

00 00

P ( U Y 1 I X ) = ~ P ( Y 1 I X)
i=1 i=1

(3) X, Y € F are independent if and only if P (Y I X)
P (Y);

(4) if UXi --...: U and P (Y IXi) are well-definied and •
i=l

X, n X, n Y = rp (i =1= j) for all i and j, then

00
P (Y) = s P (Y I x.: P (Xi)'

i=l

Proof. (1) If X ~ Y, then certainly P (Y n X) = P (X)

commutes with P (X) -1 and P (Y I X) = P (Y n X) P (X) .1

=1.

(2) If P (YI I X) = P (Y1 n X) P (X) -1 for all i = 1,
2, o. 0' n, 000' then remembering that (Y, n X) n

00
(Y j n X) = Yin Y j n X = rp for all i =1= j, then ~ P (Yi I

i=1
00 00

X) = ~ P (Y j n X) P (X) .J = ( ~ P rv. n X) ) P (X) .1 •
i=l i=1

00 00
= P ( U (Yi n X) ) P (X) ..1 = P ( ( U Yi) n X) P (X) _1

1=1 i='1

00
= P ( U v, I X).

i=1

(3) If Y and X are independent, so that p(YnX) = P(Y)
P(X), then P(Y) = p(YnX)p(X)-l = P(Y! X). Conversely,
if P(Y) = P(Y IX), then P(Y) = p(YnX)p(X)-1 and there
fore P(Yfl X) = P(Y)P(X).

(4) By hypothesis P(Y Ix.: = P(Y0XdP(Xd-1 or
P(Y IXdP(Xd = P(Y{)X j ) for all i = 1, 2, . 00' n, ... Then
since Yi [IY, nx = rp for i =1= j,

..

e'
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•

if.)

nUX,) = p(ynU) = P(Y).
;=1

BAYES THEOREM. Under the hypothesis of (4) of the
previous proposition and if P (XI' IY) are defined, then

00

P(X1, IY) .~P(Y IXi)P(Xd = P(Y IXI,)P(XI.).
I~I

Proof. By hypothesis P(XI, I Y) = P(XI, n Y)P(Y)...J and
P(Y Ix.: = p(ynXk)p(Xk)-l1 . Thus, P(XI' IY)P(Y) = P(XI,
riY) = P(Y IXk)P(X\.). By substituting the result of (4)
in the previous proposition, Bayes theorem is thus obtained.

REMARKS. A particular type of matrix-valued probability
space (U, F, P) for which P(Y IX) is invariably defined for
every X, Y f F is one in which

P(X)

•

where PI and P~ are any two ordinary probailities defined on
(U, F).

In this case observe that the product of any positive semi
definite matrices of the above form is always positive semi
definite, since any two of them commute.
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